Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Chem Commun (Camb) ; 59(7): 868-871, 2023 Jan 19.
Article in English | MEDLINE | ID: covidwho-2268710

ABSTRACT

Macrocycles often exhibit good biological properties and potential druggability, which lead to versatile applications in the pharmaceutical industry. Herein, we report a highly efficient and practical methodology for the functionalization and macrocyclization of Trp and Trp-containing peptides via Pd(II)-catalyzed C-H alkenylation at the Trp C4 position. This method provides direct access to C4 maleimide-decorated Trp-containing peptidomimetics and maleimide-braced 17- to 30-membered peptide macrocycles. In particular, these unique macrocycles revealed low micro- to sub-micromolar EC50 values with promising anti-SARS-CoV-2 activities. Further explorations with computational methodologies and experimental validations indicated that these macrocycles exert antiviral effects through binding with the N protein of SARS-CoV-2.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Peptides/pharmacology , Peptides/chemistry , Cyclization , Maleimides
2.
Eur J Med Chem ; 249: 115129, 2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2178287

ABSTRACT

The 3C-like protease (3CLpro) is essential for the replication and transcription of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), making it a promising target for the treatment of corona virus disease 2019 (COVID-19). In this study, a series of 2,3,5-substituted [1,2,4]-thiadiazole analogs were discovered to be able to inhibit 3CLpro as non-peptidomimetic covalent binders at submicromolar levels, with IC50 values ranging from 0.118 to 0.582 µM. Interestingly, these compounds were also shown to inhibit PLpro with the same level of IC50 values, but had negligible effect on proteases such as chymotrypsin, cathepsin B, and cathepsin L. Subsequently, the antiviral abilities of these compounds were evaluated in cell-based assays, and compound 6g showed potent antiviral activity with an EC50 value of 7.249 µM. It was proposed that these compounds covalently bind to the catalytic cysteine 145 via a ring-opening metathesis reaction mechanism. To understand this covalent-binding reaction, we chose compound 6a, one of the identified hit compounds, as a representative to investigate the reaction mechanism in detail by combing several computational predictions and experimental validation. The process of ring-opening metathesis was theoretically studied using quantum chemistry calculations according to the transition state theory. Our study revealed that the 2,3,5-substituted [1,2,4]-thiadiazole group could covalently modify the catalytic cysteine in the binding pocket of 3CLpro as a potential warhead. Moreover, 6a was a known GPCR modulator, and our study is also a successful computational method-based drug-repurposing study.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Peptide Hydrolases , Cysteine , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Cysteine Endopeptidases/metabolism , Antiviral Agents/chemistry
3.
J Nat Prod ; 85(2): 327-336, 2022 02 25.
Article in English | MEDLINE | ID: covidwho-1655431

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 5 million deaths worldwide to date. Due to the limited therapeutic options so far available, target-based virtual screening with LC/MS support was applied to identify the novel and high-content compounds 1-4 with inhibitory effects on SARS-CoV-2 in Vero E6 cells from the plant Dryopteris wallichiana. These compounds were also evaluated against SARS-CoV-2 in Calu-3 cells and showed unambiguous inhibitory activity. The inhibition assay of targets showed that compounds 3 and 4 mainly inhibited SARS-CoV-2 3CLpro, with effective Kd values. Through docking and molecular dynamics modeling, the binding site is described, providing a comprehensive understanding of 3CLpro and interactions for 3, including hydrogen bonds, hydrophobic bonds, and the spatial occupation of the B ring. Compounds 3 and 4 represent new, potential lead compounds for the development of anti-SARS-CoV-2 drugs. This study has led to the development of a target-based virtual screening method for exploring the potency of natural products and for identifying natural bioactive compounds for possible COVID-19 treatment.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Microbial Sensitivity Tests/methods , Phloroglucinol/pharmacology , SARS-CoV-2/drug effects , Terpenes/pharmacology , Chromatography, High Pressure Liquid , Chromatography, Liquid , Crystallography, X-Ray , Drug Delivery Systems , Dryopteris/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Docking Simulation , Molecular Structure , Virtual Reality
4.
J Med Chem ; 65(4): 2827-2835, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1366783

ABSTRACT

The receptor recognition of the novel coronavirus SARS-CoV-2 relies on the "down-to-up" conformational change in the receptor-binding domain (RBD) of the spike (S) protein. Therefore, understanding the process of this change at the molecular level facilitates the design of therapeutic agents. With the help of coarse-grained molecular dynamic simulations, we provide evidence showing that the conformational dynamics of the S protein are globally cooperative. Importantly, an allosteric path was discovered that correlates the motion of the RBD with the motion of the junction between the subdomain 1 (SD1) and the subdomain 2 (SD2) of the S protein. Building on this finding, we designed non-RBD binding modulators to inhibit SARS-CoV-2 by prohibiting the conformational change of the S protein. Their inhibition effect and function stages at inhibiting SARS-CoV-2 were evaluated experimentally. In summary, our studies establish a molecular basis for future therapeutic agent design through allosteric effects.


Subject(s)
Antiviral Agents/pharmacology , Molecular Dynamics Simulation , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Allosteric Regulation/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cells, Cultured , Chlorocebus aethiops , Drug Evaluation, Preclinical , Humans , Microbial Sensitivity Tests , Molecular Structure , SARS-CoV-2/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
5.
Front Chem ; 9: 659764, 2021.
Article in English | MEDLINE | ID: covidwho-1348467

ABSTRACT

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still an emergent pandemic for humans. The virus infection is achieved by penetrating its spike protein to host cells via binding with ACE2. Moreover, recent studies show that SARS-CoV-2 may have multiple receptors that need to be further revealed. SARS-CoV-2 shares similar sequences of the spike protein with the Middle East Respiratory Syndrome Coronavirus (MERS-CoV), which can invade host cells by binding to either DPP4 or sialic acids. Sialic acids can be linked to the terminal of glycoproteins and gangliosides are used as one of the receptors of many types of viruses. Therefore, it is very interesting to determine whether sialic acid is a potential receptor of SARS-CoV-2. To address this question, we took N-Acetylneuraminic acid (Neu5Ac), a type of predominant sialic acid found in human cells, as the molecular probe to computationally search the surface of the spike protein to locate the potential binding sites of Neu5Ac. SPR analysis and mass spectrum analysis confirmed the interaction between Neu5Ac and spike protein. This study shows that sialic acids can moderately interact with the spike protein of SARS-CoV-2 by binding between the two RBDs of the spike protein, indicating it could be a potential secondary or auxiliary receptor of SARS-CoV-2.

6.
Acta Pharmacol Sin ; 43(4): 788-796, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1343437

ABSTRACT

An epidemic of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading worldwide. SARS-CoV-2 relies on its spike protein to invade host cells by interacting with the human receptor protein Angiotensin-Converting Enzymes 2 (ACE2). Therefore, designing an antibody or small-molecular entry blockers is of great significance for virus prevention and treatment. This study identified five potential small molecular anti-virus blockers via targeting SARS-CoV-2 spike protein by combining in silico technologies with in vitro experimental methods. The five molecules were natural products that binding to the RBD domain of SARS-CoV-2 was qualitatively and quantitively validated by both native Mass Spectrometry (MS) and Surface Plasmon Resonance (SPR). Anti-viral activity assays showed that the optimal molecule, H69C2, had a strong binding affinity (dissociation constant KD) of 0.0947 µM and anti-virus IC50 of 85.75 µM.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Humans , Protein Binding , SARS-CoV-2
7.
Acta Pharmacol Sin ; 43(2): 483-493, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1205431

ABSTRACT

The COVID-19, caused by SARS-CoV-2, is threatening public health, and there is no effective treatment. In this study, we have implemented a multi-targeted anti-viral drug design strategy to discover highly potent SARS-CoV-2 inhibitors, which simultaneously act on the host ribosome, viral RNA as well as RNA-dependent RNA polymerases, and nucleocapsid protein of the virus, to impair viral translation, frameshifting, replication, and assembly. Driven by this strategy, three alkaloids, including lycorine, emetine, and cephaeline, were discovered to inhibit SARS-CoV-2 with EC50 values of low nanomolar levels potently. The findings in this work demonstrate the feasibility of this multi-targeting drug design strategy and provide a rationale for designing more potent anti-virus drugs.


Subject(s)
Antiviral Agents/pharmacology , Drug Design , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Chlorocebus aethiops , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL